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RLSO – 1989 Boeing study for NASA ARC
“Develop a concept for a LLOX-producing lunar base that 

would be built by robots before human crews arrive”
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Integrated element designs.
Quantified operations analysis.
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What would RLSO look like in 2019?

• Lunar polar volatiles, including ice

• ISS experience, international collaboration

• SPD-1, Moon Village, commercial actors, private capital

• SLS, Orion, Gateway, CLPS, Blue Moon

•Modern tools: spreadsheets, CAD, performance models
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The integrated model seeks to gracefully handle the interconnected aspects of the lunar 
base in order to size the entire base system

Jul2019 RLSO2 Pre-decisional study 5

Each major element of the 
ops model is flexible and 

expandable, allowing for the 
integration of a wide variety 

of base element designs
• ISRU techniques and elements
• Energy system architectures
• Lunar lander designs

• etc.

The importance of quantitative operations modeling



Functional decomposition of ice-based propellant ISRU 

Electrolysis
2 H2O  à 2H2 +  O2

Liquefaction
Cooling O2 to 90K and H2 to 33K

Storage
Storing cryogenic propellant in a depot

Extraction
Collection of volatiles

Excavation
Regolith handling & transportation

Purification
Removal of contaminants
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Major elements of an ISRU base Energy 
System

Habitat 
System

ISRU Mining 
System

ISRU 
Processing 

System

Propellant 
Storage Depot Lander 

SystemJul2019 RLSO2 Pre-decisional study 7

Energy System – >500 kW capacity, near-100% duty cycle, modular 
units landed intact, then connected via cables or laser 

Habitat System – 30-day visits: hab, logistics, workshop, EVA, 
regolith-shield superstructure 

ISRU Mining System – Mobile robots that reach, excavate, 
beneficiate, and transport lunar regolith (or extract resource 
onboard and transport it)

ISRU Extraction System – Processor that separates frozen volatiles 
from lunar regolith

ISRU Volatiles Processing System – Plant that separates water from 
other volatiles, and cracks it into H2 and O2

ISRU Depot System – Plant that liquefies, cryogenically stores, and 
distributes cryogenic propellant to reusable landers

Lander System – Reusable, refuelable lander, reusable landing pad, 
and ground support systems

ISRU Volatile 
Extraction System
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Base element designs must be integrated

Reusable Lander
• B300-module capacity
• LLOX, LH2 from polar ice
• 30 mT down-capacity, surface-based

Habitat Complex
• Modular habitat
• Regolith shield superstructure
• Strong driver for assembly requirements

Mobile Gantry
• Self-offloading cargo handler
• Integrated with hab complex assembly
• Fuel-cell power

PV Power Plant
• 188-kWe BOL, modular unit
• 4 T, self-deployed
• Active area ≥ 4m above ground
• Compatible with Blue Moon delivery

10m



Polar ice resources

Total 

Fractional 

Area

(%)

Water 

concentration 

(wt%)

Depth 

beneath the 

surface (cm)

Water-

containing 

column 

(cm)

Total water 

excavated 

(kg/m3)

Extraction 

area for 10 t 

of water (m2),

@30% patchy 

Type 1a 

PSR regolith 
9 2 20-100 80 7.2 1,400

Type 1b 

PSR surface frost
9 100 0 - 0.002 0.002 0.006 > 1.5M

Type 2

PLR buried regolith 
28 1 40-100 60 2.7 3,700

Type 3

PLR deeper regolith
7 0.5 60-100 40 0.9 12,000

Type 4

Lunation-lit regolith 
56 0 -- 0 0 n/a

~20km

Type 1
Type 2
Type 3
Type 4

• Bin by water-stability depth into four terrain types

• Map areas that have 20-m DEM and high-res thermal models

• Illustrated: Hermite-A crater, lunar north pole
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Storage
Depot at landing pad

Excavation
Dig & Haul robots

Extraction
Central 

microwave unit

Purification
Processing plant

Electrolysis
PEM or SOXE

Liquefaction
Turbopumps 

& Coolers

Reach, remove, 
and haul 

regolith resource 
<1 km to ISRU base

Power Infrastructure
• Multiple PV rim stations yield high 

lunation duty cycle
• Laser WPT to central power station
• Cable distribution to base elements
• Mobile elements use fuel cells, 

recharge at central station

Type 1a Resource
2 wt% water ice, found

20 – 100 cm down

LP
SD

Hab

PV 
Arrays Laser WPT 25 

km range

Power Station

ISRU Plant
Purification
Electrolysis

Liquefaction

Fuel Celled 
Dig/Haul Robots 

Central 
Microwave 
Extractor

Landing 
Pad

Propellant 
Storage 
Depot

Shielded 
Habitat

ISRU

ME

PSR
Permanently 

Shadowed Region

PS

Option 1 – Deep Shackleton, PSR
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Storage
Depot at landing pad

Excavation
Roving beneficiator 

Pneumatic collection

Extraction
Solar baking

Purification
Processing plant

Electrolysis
PEM or SOXE

Liquefaction
Turbopumps 

& Coolers

Type 1a resource
2 wt% water ice, found 

20 – 100 cm down

Beam-powered 
Roving Beneficiators

Resource 
“escalator” 

LP

SD

Hab

ISRU Plant 
Purification
Electrolysis

Liquefaction

Solar Extractor
Landing 

Pad

Propellant 
Storage 
Depot

Shielded 
Habitat

ISRU

Haul beneficiated
resource <10 km up 
and out of the crater

PV 
Arrays

Laser WPT 
25 km range

SE

Shackleton Crater

Option 2 – Shackleton Slope, into the PSR
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Power Infrastructure
• Multiple PV rim stations yield high 

lunation duty cycle
• Power cables to base elements 
• Laser WPT to excavators inside PSR
• Fuel-celled base robots



Fleet of 
resource rovers

• Core into the buried 
resource

• Heat the cores in situ
• Freeze the volatiles
• Return to base

Storage
Depot at landing pad

Purification
Processing plant

Electrolysis
PEM or SOXE

Liquefaction
Turbopumps 

& Coolers

Excavation + Extraction
In situ extraction

by coring rover
Transport frozen volatiles 

to base (3-8 km)

Type 2 resource
1 wt% water ice, found 

40 – 100 cm down

Power Infrastructure
• Multiple PV stations yield high 

lunation duty cycle 
• Solar/fuel cell mobility
• Excavator Extractor Retriever 

and base robots 

LP
SD

Hab

PV Arrays

ISRU Plant 
Purification
Electrolysis

Liquefaction

Landing 
Pad

Propellant 
Storage Depot

Shielded Habitat

ISRU

Rovers retrieve 
volatiles to base 

(3-8 km)

PLR
Persistently Lit Region

Option 3 – Shackleton West Ridge, PLR Ice Fields
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Water need
• Lander flights per year: 4
• Propellant required per flight: 40,000 kg
• Water required per flight: 51,500 kg (6:1 engine ratio vs. 8:1 water mass ratio)
• Water need: 206,000 kg/yr =  1,130 kg/d @ half-time operations 

Resource assumptions
• Type 1: 0.15 m3 (~210 kg) regolith per kg of H2O yield
• Type 2: 0.40 m3 (~600 kg) regolith per kg of H2O yield

Regolith need
• Type 1: 240,000 kg/d @ half-time
• Type 2: 680,000 kg/d @ half-time

Initial ISRU Requirements
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Volatiles processing minimum: 10.5 kWh per 1 kg of water
• 2 kWh/kg for extraction from regolith
• 6.5 kWh/kg for electrolysis: H2O into H2 and O2

• 2 kWh/kg for liquefaction: H2 and O2 into LH2 and LOX

ISRU energy: 2,200,000 kWh/yr
• Quantity of water required: 206,000 kg/yr

ISRU power: 500 kW @ half-time ops (4,380 hr)

Other energy requirements include:
• Excavation, hauling, cryogenic storage
• Hab-complex sustained operation
• General mobility and base operations
• Power losses (cables and beaming)

Total base power need: ≥600 kW

Base Energy Requirements
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• Minimum base (habitat + 
flight) power need is 
approximately the same for 
each architecture
• ISRU dominates power need  

over minimum base
• Cable and beaming losses 

are a substantial fraction of 
the power budget in all 
cases
• Scheme 1 suffers 

significantly higher losses 
because the energy-
expensive processing is a 
long way from the power 
source   

Comparing energy needs across base options 
Average Base Power Needs



Option comparison
Option Best attributes Worst attributes

1.
Deep Shackleton

• Best quality resource, with minimal 
overburden removal

• Stable operating environment: dark, 70K

• Significant power 
distribution losses

• Base cannot easily access 
regional exploration sites

• Base is permanently dark

2.  
Shackleton Slope

• Best quality resource, with minimal 
overburden removal

• Base can support exploration excursions

Resource must be brought 
several km up and out of crater

3.   
Shackleton West Ridge

• Avoids crater slopes
• Proximate sunlight and shadow
• 0.5m/px LROC imagery
• Base can support exploration excursions

“Half-quality” resource, buried 
deeper
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Emergent findings

“Best” ice resource and location may not be in a PSR

Nuclear power useful for production-scale ISRU would have to be MWe class

Potential competitive roles for commercial actors
• Power providers, extraction rovers

Empirical knowledge gaps with high leverage
• Vertical distribution at m scale – wt% of ice as a function of depth

• Horizontal distribution at km scale – patchiness of resource “field”

• Geotechnical properties – “coffee grounds and sugar” or cryo-permafrost

• Diffusion rate – trapping vs losing the resource from heating in situ

• Agitation loss coefficient – losing the resource from handling it

Jul2019 RLSO2 Pre-decisional study 17



18Jul2019 RLSO2 Pre-decisional study


